9 research outputs found

    High-precision method for cyclic loading of small-animal vertebrae to assess bone quality

    No full text
    One potentially important bone quality characteristic is the response of bone to cyclic (repetitive) mechanical loading. In small animals, such as in rats and mice, cyclic loading experiments are particularly challenging to perform in a precise manner due to the small size of the bones and difficult-to-eliminate machine compliance. Addressing this issue, we developed a precise method for ex vivo cyclic compressive loading of isolated mouse vertebral bodies. The method has three key characteristics: 3D-printed support jigs for machining plano-parallel surfaces of the tiny vertebrae; pivotable loading platens to ensure uniform contact and loading of specimen surfaces; and specimen-specific micro-CT-based finite element analysis to measure stiffness to prescribe force levels that produce the same specified level of strain for all test specimens. To demonstrate utility, we measured fatigue life for three groups (n = 5–6 per group) of L5 vertebrae of C57BL/6J male mice, comparing our new method against two methods commonly used in the literature. We found reduced scatter of the mechanical behavior for this new method compared to the literature methods. In particular, for a controlled level of strain, the standard deviation of the measured fatigue life was up to 5-fold lower for the new method (F-ratio = 4.9; p < 0.01). The improved precision for this new method for biomechanical testing of small-animal vertebrae may help elucidate aspects of bone quality. Keywords: Fatigue, Bone mechanics, Mouse, Vertebrae, Bone qualit

    Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice.

    No full text
    Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice (n&nbsp;=&nbsp;84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short-term (11-day) or long-term (12-week) time point after exposure. Micro-computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecular mass (p &lt; 0.001), altered microarchitecture (eg, connectivity density p &lt; 0.001), and increased collagen cross-links (p &lt; 0.001). Despite these changes, vertebral strength (p&nbsp;=&nbsp;0.745) and fatigue life (p&nbsp;=&nbsp;0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p &lt; 0.01) and fatigue life (p &lt; 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total-body irradiation on the trabecular bone morphology and collagen cross-links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA
    corecore